

AI Assistant API Documentation
Version: v3

Last Updated: February 10, 2025

Written By: Eden Asipov

Table of Contents
Table of Contents
Introduction

Purpose
Scenario

Support Multiple Businesses or Websites
White-label Integration

Quick Start: Python Examples for Programmatic Management
Obtain an API Key

Prerequisites

Programmatically Create an AI Assistant
Start Website Crawling Programmatically
Verify the AI Assistant’s Readiness
Send Messages and Integrate Responses
Authentication

How to Authenticate
API Endpoint Details
Chat Operations

Send a Chat Message
Parameters
Request Body
Response

AI Assistant Management
Create and Configure a New AI Assistant

Request Body
Response

Start Website Crawling
Response

Get Crawling Status
Response

Delete the AI Assistant’s Configuration
Response

Get Page Index Data
Query Parameters
Response

Error Handling
Notes on Widget Integration
Glossary
Next Steps

Introduction

The EmbedGPT.chat API allows you to create and manage custom AI assistants for

your websites or applications. These assistants can be configured with custom

instructions and additional data, such as website content or uploaded documents, to

support specific business scenarios and reflect your brand.

This documentation covers two main areas:

●​ Management API – for programmatically creating and configuring AI assistants.

●​ Chat API – for sending messages to an assistant and retrieving responses,

enabling integration into custom interfaces like CRMs, dashboards, or mobile

apps.

Purpose

Use this API when you need programmatic control over assistant setup and interaction.

With it, you can:

●​ Create and configure AI assistants at scale.

●​ Automate website crawling and document ingestion.

●​ Integrate the assistant into your own UI using the API-based messaging API.

●​ Support advanced use cases that go beyond embedding the default JavaScript

widget.

Scenario

Here are two common ways developers and partners use the EmbedGPT.chat API:

Support Multiple Businesses or Websites

If you provide services to multiple businesses – each with their own website – you can:

●​ Create a dedicated AI assistant for each business.

●​ Configure each assistant using that business's website content and

documentation.

●​ Use the Chat API to send and receive messages directly from your own support

dashboard or custom application.

Example:​

You can create an assistant named Client1Bot, index content from

client1store.com, and programmatically fetch answers to questions like "What’s

your return policy?" – without embedding the JavaScript chat widget.

White-label Integration

If you're a partner offering AI assistants as part of your own platform, you can:

●​ White-label the BizDriver.ai service under your own brand.

●​ Programmatically create and manage assistants for your customers via the API.

●​ Build your own UI for assistant creation and configuration.

●​ Use the Chat API to power assistant conversations behind the scenes.

For example, your platform might let customers create their own assistant by providing

a website URL or uploading documents. Your system would then call the

EmbedGPT.chat API in the background to create and configure each assistant –

delivered under your own brand.

Quick Start: Python Examples for Programmatic

Management
These Python examples are tailored for customers and partners who want to

programmatically create and manage an AI assistant using the EmbedGPT.chat

management API or integrate an AI assistant’s functionality into custom systems without

relying on the EmbedGPT.chat-provided chat widget.

The following examples demonstrate creating an AI assistant, initiating a crawl, verifying

readiness, and sending messages – all via API calls for backend or custom integration

purposes.

Obtain an API Key

All requests to the EmbedGPT.chat REST API require authentication using an API key.

To get started, follow these steps to obtain your API key from the EmbedGPT.chat

portal:

1. Create an Account: Visit EmbedGPT.chat’s website and click Try it Free to sign up

with your email and password.

2. Access My Account: Log in and go to the My Account section in the dashboard.

3. Get API Key: In the Chatbots tab, select or create an AI assistant and open the Add
to Website tab to find your API keys.

You’ll see:

●​ API Key 1
●​ API Key 2

Use API Key 1 (e.g., <your-api-key>) for all the examples in this documentation.

Figure 1: Add to Website screen

Note the API Key 1 and API Key 2 fields at the bottom, which are required for

authenticating API requests.

https://embedgpt.chat/

Prerequisites
●​ Python 3.8+

●​ requests library (pip install requests)

●​ Your EmbedGPT.chat API Key 1

Programmatically Create an AI Assistant
The following example demonstrates how to create an AI assistant named Client1Bot
by calling the API.

This assistant will be configured to crawl and index content from

https://client1store.com, and will respond with a personalized welcome

message.

import requests

import json

BASE_URL = "https://api.embedgpt.chat"

NOTE: Replace with your actual API Key 1 from EmbedGPT.chat

API_KEY = "<your-api-key>"

def create_chatbot():

 url = f"{BASE_URL}/api/Chatbot/Create"

 headers = {

 "apiKey": API_KEY,

 "Content-Type": "application/json"

 }

 payload = {

 "crawlUrl": "https://client1store.com",

 "initialMessage": "Welcome to Client1Bot! How can I assist

you?",

 "chatbotName": "Client1Bot"

 }

 response = requests.post(url, headers=headers,

data=json.dumps(payload))

 if response.status_code == 200:

 result = response.json()

 chatbot_id = result.get("chatbotId")

 if chatbot_id:

 print("Client1Bot created successfully:", result)

 return chatbot_id

 else:

 print("Chatbot created, but chatbotId not found in

response.")

 return None

 else:

 print(f"Error creating Client1Bot: {response.status_code} -

{response.text}")

 return None

Execute

chatbot_id = create_chatbot()

Output:

Client1Bot created successfully:

{

 "chatbotId": "daa69e50-eabb-426f-8ad6-e50c4adaf233",

 "crawledPageCount": 0,

 "isCompleted": False,

 "createdAt": "2025-03-26T14:00:00Z"

}

Start Website Crawling Programmatically

Once you’ve created an AI assistant like Client1Bot, you need to initiate crawling so it

can fetch and index relevant website content. This prepares the assistant to answer

questions using information from the specified site.

The following Python example shows how to start the crawling process for a given

chatbotId using the API:

def start_crawling(chatbot_id):

 url = f"{BASE_URL}/api/Chatbot/{chatbot_id}/Crawl/Start"

 headers = {"apiKey": API_KEY}

 response = requests.post(url, headers=headers)

 if response.status_code == 200:

 print("Crawling started for Client1Bot:", response.json())

 else:

 print(f"Error starting crawl: {response.status_code} -

{response.text}")

Execute

start_crawling(chatbot_id)

Output:

Crawling started for Client1Bot: {'message': 'Crawling started

successfully.'}

Verify the AI Assistant’s Readiness

Before sending user messages to your AI assistant, ensure that its knowledge base is

ready by confirming the crawling process is complete. You can do this by polling the Get
Crawling Status endpoint.

The following Python snippet demonstrates how to check the crawl status periodically

until it is completed:

import time

def check_crawl_status(chatbot_id):

 url = f"{BASE_URL}/api/Chatbot/{chatbot_id}/Crawl/Status"

 headers = {"apiKey": API_KEY}

 while True:

 response = requests.post(url, headers=headers)

 if response.status_code == 200:

 status = response.json()

 print("Client1Bot crawl status:", status)

 if status["isCompleted"]:

 print("Client1Bot is ready for integration!")

 break

 else:

 print(f"Error checking status: {response.status_code} -

{response.text}")

 break

 time.sleep(10) # Check every 10 seconds

Execute

check_crawl_status(chatbot_id)

Output:

Client1Bot crawl status: {'crawledPageCount': 20, 'isCompleted':

False, 'createdAt': '2025-03-26T14:00:00Z'}

Client1Bot crawl status: {'crawledPageCount': 40, 'isCompleted': True,

'createdAt': '2025-03-26T14:00:00Z'}

Client1Bot is now ready for integration!

Send Messages and Integrate Responses

After confirming your assistant is ready, you can begin sending user messages and

retrieving AI-generated responses from your own system, such as a custom customer

support dashboard or CRM integration.

This example demonstrates how to start a new conversation and send a message to

Client1Bot, returning a response that can be displayed directly in your application.

Note: This operation may take 3 – 10 seconds, depending on the model used and

the complexity of the response.

import uuid

def send_message(chatbot_id, message):

 conversation_id = str(uuid.uuid4()) # New conversation ID

 url =

f"{BASE_URL}/api/Chatbot/{chatbot_id}/Conversation/{conversation_id}/M

essage"

 headers = {

 "apiKey": API_KEY,

 "X-User-IP": "192.168.1.1", # Optional

 "Content-Type": "application/json"

 }

 response = requests.post(url, headers=headers,

data=json.dumps(message))

 if response.status_code == 200:

 reply = response.json()["response"]

 print("Client1Bot response (for custom integration):", reply)

 return reply # Return for use in your system

 else:

 print(f"Error sending message: {response.status_code} -

{response.text}")

 return None

Execute

send_message(chatbot_id, "What’s your return policy?")

send_message(chatbot_id, "Do you ship internationally?")

Output:

Client1Bot response (for custom integration): Returns are accepted

within 30 days with a receipt.

Client1Bot response (for custom integration): Yes, we ship

internationally; rates vary by location.

Authentication

All API requests require authentication using an API key.

How to Authenticate

Include your API key in the apiKey HTTP header:

GET /api/Chatbot/{chatbotId} HTTP/1.1

Host: api.embedgpt.chat

apiKey: <your-api-key>

API Endpoint Details

The following API reference provides documentation for integrating with the
EmbedGPT.chat service. It enables you to create and manage AI assistants, initiate and
maintain chat conversations, retrieve assistant responses, and interact with website
crawling and indexed content data.

Chat Operations

Send a Chat Message

POST /api/Chatbot/{chatbotId}/Conversation/{conversationId}/Message

Initiates a message exchange within a specific conversation context. This operation
sends a user message to the AI assistant identified by chatbotId, within an existing
conversation session identified by conversationId. The assistant processes the
input and returns an appropriate response based on its configuration and contextual
understanding of the conversation history.

This API is used to programmatically interact with an AI assistant for dynamic
conversational experiences, such as integrating into support systems, e-commerce
assistants, or knowledge bots.

Parameters

Name Location Type Required Description

chatbotId Path String Yes AI assistant ID

conversationId Path String Yes Conversation ID

apiKey Header String Yes API key

X-User-IP Header String No User IP (optional)

Request Body

"What’s your return policy?"

Response

{
 "response": "Returns are accepted within 30 days with a receipt."
}

AI Assistant Management

Create and Configure a New AI Assistant

POST /api/Chatbot/Create

Creates a new AI assistant and configures it with an initial website to crawl and a default
welcome message. This operation initializes the assistant and prepares it for content
indexing.

Use this endpoint to programmatically provision AI assistants for your own website,
customers, or platform users.

Request Body

{
 "crawlUrl": "https://example.com",
 "initialMessage": "Hello, how can I assist you?",
 "chatbotName": "SupportBot"
}

Response

{
 "chatbotId": "daa69e50-eabb-426f-8ad6-e50c4adaf233",
 "crawledPageCount": 0,
 "isCompleted": false,
 "createdAt": "2025-03-26T14:00:00Z"
}

Start Website Crawling

POST /api/Chatbot/{chatbotId}/Crawl/Start

Initiates the crawling process for a specific AI assistant. This operation fetches content
from the specified website and prepares the assistant’s knowledge base for answering
user questions.

Use this endpoint after creating and configuring the assistant to begin indexing the
website content.

Response

{
 "message": "Crawling started successfully."
}

Get Crawling Status

POST /api/Chatbot/{chatbotId}/Crawl/Status

Retrieves the current progress of the website crawling process for the specified AI
assistant. This endpoint is typically used to poll for completion before enabling user
interaction with the assistant.

Use this operation after initiating a crawl to monitor when the assistant is ready to
respond with complete, indexed content.

Response

{
 "crawledPageCount": 40,
 "isCompleted": true
}

Delete the AI Assistant’s Configuration

DELETE /api/Chatbot/{chatbotId}

Permanently removes the specified AI assistant and its associated configuration from
the system. This operation is irreversible and should be used with caution.

Use this endpoint to decommission an assistant that is no longer needed.

Response

{
 "message": "Chatbot configuration deleted successfully."
}

Get Page Index Data

GET /api/Chatbot/{chatbotId}/PageIndexData

Retrieves structured index information about pages that were crawled for a given AI
assistant.

This data is useful for auditing, debugging, and enhancing transparency of what content
is available to the assistant during chat operations.

Query Parameters

Name Location Type Required Description

startIndex Query Integer No Start index

count Query Integer No Number of entries

crawlType Path String Yes Crawl type (e.g., "full")

apiKey Header String Yes API key

Response

{
 "id": "page-001",
 "url": "https://example.com/page1"
}

Error Handling

HTTP Status Code Description

200/201 Success

400 Bad request

401 Unauthorized / Invalid API Key

403 Forbidden

404 Not Found

500 Internal Server Error

Notes on Widget Integration
If you prefer the EmbedGPT.chat-provided widget, use the JavaScript snippet from the

Add to Website tab.

Glossary

Term Description

AI Assistant A chatbot created using the API that responds to user messages.

chatbotId Unique identifier for the assistant.

conversationId A session identifier for grouping related messages.

Crawl The process of fetching and indexing website content for assistant use.

Widget Pre-built EmbedGPT.chat chat interface, added via JavaScript snippet.

Next Steps

To begin integrating with the EmbedGPT.chat API:

●​ Replace API_KEY and chatbot_id in your requests with the actual values

provided in your EmbedGPT.chat dashboard.

●​ For advanced use cases or access to partner features, contact EmbedGPT.chat’s

support.

https://embedgpt.chat/Contact
https://embedgpt.chat/Contact

	
	AI Assistant API Documentation
	Table of Contents
	Introduction
	Purpose
	Scenario
	Support Multiple Businesses or Websites
	White-label Integration

	Quick Start: Python Examples for Programmatic Management
	Obtain an API Key

	Prerequisites
	Programmatically Create an AI Assistant
	Start Website Crawling Programmatically
	Verify the AI Assistant’s Readiness
	Send Messages and Integrate Responses
	Authentication
	How to Authenticate

	API Endpoint Details
	Chat Operations
	Send a Chat Message
	Parameters
	Request Body
	Response

	AI Assistant Management
	Create and Configure a New AI Assistant
	Request Body
	Response

	Start Website Crawling
	Response

	Get Crawling Status
	Response

	Delete the AI Assistant’s Configuration
	Response

	Get Page Index Data
	Query Parameters
	Response

	Error Handling
	Notes on Widget Integration
	Glossary
	Next Steps

